Effect of instantaneous frequency glides on interaural time difference processing by auditory coincidence detectors.
نویسندگان
چکیده
Detecting interaural time difference (ITD) is crucial for sound localization. The temporal accuracy required to detect ITD, and how ITD is initially encoded, continue to puzzle scientists. A fundamental question is whether the monaural inputs to the binaural ITD detectors differ only in their timing, when temporal and spectral tunings are largely inseparable in the auditory pathway. Here, we investigate the spectrotemporal selectivity of the monaural inputs to ITD detector neurons of the owl. We found that these inputs are selective for instantaneous frequency glides. Modeling shows that ITD tuning depends strongly on whether the monaural inputs are spectrotemporally matched, an effect that may generalize to mammals. We compare the spectrotemporal selectivity of monaural inputs of ITD detector neurons in vivo, demonstrating that their selectivity matches. Finally, we show that this refinement can develop through spike timing-dependent plasticity. Our findings raise the unexplored issue of time-dependent frequency tuning in auditory coincidence detectors and offer a unifying perspective.
منابع مشابه
Cochlear and neural delays for coincidence detection in owls.
The auditory system uses delay lines and coincidence detection to measure the interaural time difference (ITD). Both axons and the cochlea could provide such delays. The stereausis theory assumes that differences in wave propagation time along the basilar membrane can provide the necessary delays, if the coincidence detectors receive input from fibers innervating different loci on the left and ...
متن کاملAuditory Lateralization Ability in Children with (Central) Auditory Processing Disorder
Objectives: The aim of the present study was to assess the auditory lateralization ability in children with (central) auditory processing disorder. Methods: Participants were divided in two groups: 15 children with Central Auditory Processing Disorder (8-10 years) and 80 normal children (8-11 years) from both genders with pure-tone air-conduction thresholds better than 20 dB HL bilaterally a...
متن کاملA matter of time: internal delays in binaural processing.
As an animal navigates its surroundings, the sounds reaching its two ears change in waveform similarity (interaural correlation) and in time of arrival (interaural time difference, ITD). Humans are exquisitely sensitive to these binaural cues, and it is generally agreed that this sensitivity involves coincidence detectors and internal delays that compensate for external acoustic delays (ITDs). ...
متن کاملRecurrent Timing Neural Networks for Joint F0-Localisation Estimation
A novel extension to recurrent timing neural networks (RTNNs) is proposed which allows such networks to exploit a joint interaural time difference-fundamental frequency (ITD-F0) auditory cue as opposed to F0 only. This extension involves coupling a second layer of coincidence detectors to a two-dimensional RTNN. The coincidence detectors are tuned to particular ITDs and each feeds excitation to...
متن کاملCoding interaural time differences at low best frequencies in the barn owl.
In birds and mammals, precisely timed spikes encode the timing of acoustic stimuli, and interaural acoustic disparities propagate to binaural processing centers. The Jeffress model proposes that these projections act as delay lines to innervate an array of coincidence detectors, every element of which has a different relative delay between its ipsilateral and contralateral excitatory inputs. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 44 شماره
صفحات -
تاریخ انتشار 2011